TouchCounts in K-1: Prescribed Learning Outcomes in the BC Curriculum ## Sarah Wong Simon Fraser University September 2015 This table provides teacher questions, prompts, and student suggestions for using the *TouchCounts* app (www.touchcounts.ca) to address the Prescribed Learning Outcomes (PLOs) relating to Number in the British Columbia curriculum for kindergarten and Grade 1. The PLOs track those of *Mathematics K to 7: Integrated Resource Package 2007* from the BC Ministry of Education (http://www.bced.gov.bc.ca/irp/pdfs/mathematics/2007mathk7.pdf). ## **Kindergarten Number Outcomes** | | Prescribed Learning Outcomes | TouchCounts' Teacher Questions or Prompts | |---|--|--| | K | A1. Say the number sequence by 1s starting anywhere from 1 to 10 and from 10 to 1 [C, CN, V] | How high can you go? Can you put <i>X</i> on the shelf? Can you make 4 at once each time to get 5, 10 on the shelf? Teacher puts <i>X</i> on shelf. Can you get to <i>Y</i>? What number comes after this one? What number comes before this one? | | K | A2. Recognize, at a glance, and name familiar arrangements of 1 to 5 objects or dots [C, CN, ME, V] | Can you make 2,3,4, or 5 at once? Can you make X to look like what you see on a dice? Can you make X to look like what you see on a five frame? How else can you arrange X? Build a set and ask how many are there? | | K | A3. Relate a numeral, 1 to 10, to its respective quantity [CN, R, V] | How many taps did you make to get X on the shelf? Show me X How did you make X? How many are there? Can you hold X and how do you know it's X? | |---|---|--| | K | A4. Represent and describe numbers 2 to 10, concretely and pictorially [C, CN, ME, R, V] | Can you make two equal rows of X? How many more do you need to get to 5? 10? Can you break up X into two parts? How many are in each part? Can you break up X into two equal parts? How many ways can you break up X? Can you combine the numbers to make X? | | K | A5. Compare quantities, 1 to 10, using one-to-one correspondence [C, CN, V] | Which circle has more? Which circle has fewer? Can you make a group that has more? Can you make a group that has less? | ## **Grade 1 Number Outcomes** | | Prescribed Learning Outcomes | Questions or Prompts | |---|---|--| | 1 | A1. Say the number sequence, 0 to 100, by | | | | 1s forward and backward between any
two given numbers | How high can you go? Can you put X on the shelf? Can you make 4 at once each time to get 5, 10 on the shelf? Start with X. Can you get to Y? What number comes after this one? What number comes before this one? | | | • 2s to 20, forward starting at 0 | Can you count using two fingers at the same time? What do you notice? Can you put 2,4,6,8,10on the shelf? Can you put 10 (or 20) on the shelf in different ways? | | | • 5s and 10s to 100, forward starting at 0 [C, CN, V, ME] | Can you count using five fingers at the same time? Can you count using ten fingers at the same time? Can you put 5,10,15,on the shelf? Can you put 10, 20, 30 on the shelf? | | 1 | A2. Recognize, at a glance, and name familiar arrangements of 1 to 10 objects or dots [C, CN, ME, V] | Can you make 2,3,4, or 5 at once? Can you make <i>X</i> to look like what you see on a dice? Can you make <i>X</i> to look like what you see on a ten frame? How else can you arrange <i>X</i>? Build a set and ask how many there are. How do you know there are <i>X</i>? What shape does the set make? | |---|--|---| | 1 | A3. Demonstrate an understanding of counting byindicating that the last number said identifies "how many" | What's the biggest number you can make? How many are there? How do you know how many there are? | | | showing that any set has only one count | How many are there?How do you know how many there are? | | | using the counting on strategy | • Teacher puts <i>X</i> on the shelf. Can you get to <i>Y</i> ? | | | • using parts or equal groups to count sets [C, CN, ME, R, V] | Show two groups. How do you know this makes X? Which group has more? less? Are they equal? Can you make a set of X? How many are there? Can you break X up? Now how many are there on the screen? Can you break X up into equal groups? | | 1 | A4. Represent and describe numbers to 20 concretely, pictorially, and symbolically [C, CN, V] | Show several counters on the screen. Which one says <i>X</i>? Can you make 2 equal rows of <i>X</i>? How many more do you need to get to 5? 10? Can you break up <i>X</i> into two parts? How many are in each part? Can you break up <i>X</i> into 2 equal parts? How many ways can you break up <i>X</i>? Can you combine the numbers to make <i>X</i>? | |---|---|--| | 1 | A5. Compare sets containing up to 20 elements to solve problems using one-to-one correspondence [C, CN, ME, PS, R, V] | Have two students each make a set to compare. Who has more? Who has less? How many more does s/he have? How many more do you need to have the same as your partner? How many taps did you make to get X on the shelf? | | 1 | A7. Demonstrate, concretely and pictorially, how a given number can be represented by a variety of equal groups with and without singles [C, R, V] | Can you make 2 equal rows of X? Can you break up X into Y parts? How many are in each part? Can you break up X into groups of Y? How many are leftover? Can you break up X into 2 equal parts? How many ways can you break up X? Can you make two rows where one of the rows has one more than the other? | | 1 | A8. Identify the number, up to 20, that is one more, two more, one less, and two less than a given number [C, CN, ME, R, V] | Show a number, dot card or build the number in Number World. Can you show me one more, two more than X? Show a number or dot card. Can you show me one less, two less than X? X is how many less than Y? I am thinking of a number that is 2 more/less than X. Show me the number on the iPad. How many counters are there? If I had two more, how many would there be? | |---|--|---| | 1 | A9. Demonstrate an understanding of addition of numbers with answers to 20 and their corresponding subtraction facts, concretely, pictorially, and symbolically by | Students cannot communicate mathematical symbols directly to <i>TouchCounts</i> , so can communicate the math sentence orally or on a sheet of paper. | | | using familiar and mathematical
language to describe additive and
subtractive actions from their experience | Tell a story where two sets are joined. Tell a story where some are taken away from a set. What math sentence goes with your story? | | | modelling addition and subtraction
using a variety of concrete and visual
representations, and recording the
process symbolically | Can model with concrete and visual representations but cannot record the process symbolically. Look at the set (and the colour of the dots). Can you tell me how the number <i>X</i> was built? | | | [C, CN, ME, PS, R, V] | | | 1 | A10. Describe and use mental mathematics strategies (memorization not intended), such as | | |---|--|---| | | counting on and counting back | Start at <i>X</i> and count on. Have numbers on the shelf or work in zero gravity mode. Can you count back from <i>X</i>? | | | • making 10 | Make several sets in Operations World. Combine two sets to make 10. How many ways can you make 10? Can you break 10 into two sets? How many ways can you break 10 apart into two sets? How many more do I need to make 10? | | | • doubles | Make a double using two fingers on one hand and two on the other. (Increase number of fingers used at a time.) Start with a set. Can you build another set just like this one? If you joined the two sets, how many would you have? (predict) Teacher makes several sets. Combine two sets to make a double. How many do you have now? What do you notice about the coloured dots? What would be the math sentence that goes with this set? (look at the different coloured dots) | | • us | sing addition to subtract | • There are <i>X</i> in the set. How many do you need | |-------|---------------------------|--| | [C, C | CN, ME, PS, R, V] | to remove to get <i>Y</i> ? If you removed <i>Y</i> , how many would be left in the set? | Across activities, teachers can show dot cards, ten frames or numeral cards and ask students to build that number in *TouchCounts*. Also encourage students to think of a problem that they can pose to their partner(s). Ask them: "How would you solve the problem? Did your partner solve the problem in the same way that you did?"